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We examine the intuitive, classical idea that an interactive system involving
commonly used attractive potentials should always have a pressure which is less
than that of an ideal Fermi gas. We find that quantum effects are of crucial
importance and that, while this idea is normally correct, under certain circum-
stances, the pressure can exceed that of the ideal Fermi gas.
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1. INTRODUCTION AND SUMMARY

It is well known that a neutral system of ions and electrons has an energy
which is less than that of the corresponding non-interacting system. This
result can be deduced simply by noting first that the expectation value of
the Hamiltonian using any wave function is an upper bound. We choose
the expectation value of the interactions using the ideal Fermi gas wave
function. The upper bound on the energy shift is just the e2 term in the
Matsubara perturbation series. This term is of fixed negative sign. See, for
example, ref. 1. One might suppose intuitively, that an attractive potential
would also reduce the pressure that the system exerts on its container. The
idea is that the attractive potential would cause the particles to clump
together and thus behave effectively like a smaller number of particles.
Hence they would exert less pressure. In this paper we will see that the
situation is more subtle than the above argument might suggest. While this
argument might be valid in the classical case, where pW/NkT was shown (2)

to depend only on a single variable proportional to T3W, it is well known
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that the classical case does not exist. The reason is that in it the energy is
not lower semi-bounded. We denote the pressure by p, the volume by W,
the number of ions by N, Boltzmann’s constant by k and the temperature
by T. The role of quantum mechanics is crucial. We will see that, under
certain circumstances, it does seem to be possible that the electron pressure
can exceed that of an ideal gas, even though the ion-electron potential is
attractive. The type of electron-ion potential that can cause this effect is of
the same character as the one use in the Thomas–Fermi theory of the
equation of equation of state. This theory (3–8) and its derivative theories,
e.g., the Thomas–Fermi–Dirac theory (9, 10) are perhaps the theories in most
general use today.

In order to lay the basis for our investigation, we show in the second
section, that the exact solution for the pressure of an ideal Fermi gas can
be reformulated in terms of the normal statistical mechanical formulæ as
applied to the quantum mechanical solution in a Wigner–Seitz cell (11) of a
Bravais lattice, when integrated over the first Brillouin zone. (12) This rein-
terpretation amounts to a reorganization of the integrals which appear in
the exact solution for the ideal Fermi gas. Following Wigner and Seitz, (11)

the computations will be simplified by changing the shape of the cell to a
sphere. It is pointed out that Baker (13) has studied previously the error in
the pressure for the ideal gas resulting from the use of a spherical cell. This
error is at most only a few percent.

In the third section, we focus on the low temperature limit of a
moderately dilute, spherical, cellular model. The potential used is that of
Hydrogen near the ion, but drops more rapidly than the normal Coulomb
potential as the distance from the ion increases. We find that in cases of
this character, the pressure, although rather small, can exceed that for the
ideal Fermi gas by a substantial factor. We outline in a simple case an ana-
lytic calculation by means of perturbation theory which demonstrates that
the pressure can increase above that for an ideal Fermi gas. We also dem-
onstrate numerically this effect by a direct computation of the pressure in
the spherical cellular model approximation.

2. CELLULAR VERSION OF THE IDEAL FERMI GAS

The text book formulation of the pressure of an ideal gas is basically
as follows. Consider a large cube of edge L with periodic boundary condi-
tions. The eigenvalues of the Schrödinger equation are

(
2(2p)2 (i2+j2+k2)

2mL2 . (2.1)
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The i, j and k are all integers (positive, negative or zero). The grand parti-
tion function is given as

Q(W, T)= C
.

N=0
exp[Nm(W, T)/(kT)] QN(W, T)

= C
.

N=0
C
{nj}

; nj=N

exp 5C
j

(m(W, T) − Ej) nj/(kT)6

=D
j

{1+exp[(m(W, T) − Ej)/(kT)]}, (2.2)

for the case of Fermi statistics as nj=0, 1 only. The parameter m is deter-
mined by N, the expected number of Fermions in the cube. By taking the
partial derivative of log Q with respect to the parameter m, we can obtain in
the usual manner,

N=C
j

1
exp[(Ej − m)/kT]+1

. (2.3)

Using this value of m, we may deduce the Helmholtz free energy from the
logarithm of the partition function as

A(W, T)=Nm(W, T) − kT C
j

ln{1+exp[(m(W, T) − Ej)/(kT)]} (2.4)

The presure is also determined in the usual way as

pW=−W
“A
“W

:
T
=−C

j

W
“Ej

“W
:
T

exp[(Ej − m)/kT]+1
. (2.5)

Since each eigenvalue is inversely proportional to L2, and the volume W is
just L3, W“Ej/“W=−2

3 Ej, which leads to the usual result, pW=2
3 U, where

U is the internal energy. In the limit of infinite box size (L Q .) Eq. (2.3)
becomes,

z=
N
2W

1 h2

2pmkT
2

3
2

=f3
2
(z)=

2

`p
F

.

0

zy
1
2 e−y dy

1+ze−y , (2.6)

where z is the de Broglie density which measures the importance of
quantum effects, and z=exp(m/kT). The leading factor of 1

2 arises because
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we are considering spin 1
2 Fermions, e.g., electrons. In this limit, Eq. (2.5)

becomes

pW

NkT
=

f5
2
(z)

f3
2
(z)

, (2.7)

where,

f5
2
(z)=

4

3 `p
F

.

0

zy
3
2 e−y dy

1+ze−y , (2.8)

Let us select a3=W/N, so that the volume is exactly filled by N small
cubes of edge a. The structure of the N small cubes is just a portion of a
simple cubic lattice. The reciprocal lattice to this lattice is also a simple
cubic lattice and the edge of a primitive cell is 2p/a. If we make the change
of variables, y=(

2(kF)2/(2mkT), then (2.6) may be rewritten as,

1=
2a3

(2p)3 FFF
.

−.

z exp 1 −
(

2k2

2mkT
2 dkF

1+z exp 1 −
(

2k2

2mkT
2

. (2.9)

If we now divide the range of integration of kF up according to the primitive
cells of the reciprocal lattice we obtain the equation for m as,

1=2 C
+.

j1=−.

C
+.

j2=−.

C
+.

j3=−.

1 a
2p
23

FFF
p/a

−p/a

dkF

1+z−1 exp 5 (
2

2mkT
1kF+

2p

a
[F2

26
,

(2.10)

where the steps in the sums of the ji are just unity. The corresponding
formula for the pressure is just,

pW

NkT
=

4
3

C
+.

j1=−.

C
+.

j2=−.

C
+.

j3=−.

1 a
2p
23

FFF
p/a

−p/a

(
2

2mkT
1kF+

2p

a
[F2

2

dkF

1+z−1exp 5 (
2

2mkT
1kF+

2p

a
[F2

26
,

(2.11)

We may now introduce an interpretation of (2.10)–(2.11) in terms of
the solution of Schrödinger’s equation in a small (Wigner–Seitz) cell. In the
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theory of periodic lattices, Bloch’s theorem states (12) that any solution for
the ‘‘one-electron wave function’’ is of the form k(rF)=e ikF · rFf(rF), where
f(rF) has the periodicity of the lattice. Following this idea, if we substitute
e ikF · rFf(rF) in the Schrödinger equation, we obtain,

(
2k2

2m
fl(rF) −

i(2

m
kF · NFfl(rF) −

(
2

2m
N2fl(rF)+V(rF) fl(rF)=El(kF) fl(rF). (2.12)

where for the ideal gas, V(rF)=0. The boundary conditions required by
periodicity are,

nF · NFfeven=0, fodd=0, (2.13)

where nF is the outward pointing normal to the surface of the cell, and
‘‘even’’ and ‘‘odd’’ refer to the parts of the wave function which are even
or odd under a reflection operation which maps the cell onto itself. We
observe that

f(rF)=exp 12pi
a

[F · rF2 (2.14)

has the eigenvalues

(
2

2m
1kF+

2p

a
[F2

2

. (2.15)

Thus, (2.10) and (2.11) are exactly same as if we were to have applied the
standard statistical mechanical formulæ to a single small cell, except that
instead of the eigenvalues being just a set of discrete values, we must
integrate over the first Brillouin zone (0 [ ki [ 2p/a).

If one traces through the above discussion, it is clear that the same
construction works for any Bravais lattice. The small cell is then just the
Wigner–Seitz cell for that lattice. As the reciprocal lattice of a Bravais
lattice is a Bravais lattice, (12) again the results which correspond to (2.10)
and (2.11) are just a rearrangement of the integrals. The reciprocal of a
body centered cubic lattice is just the face centered cubic lattice, and vice
versa. The Wigner–Seitz cells are the truncated octahedron for the bcc
lattice and the rhombic dodecahedron for the fcc lattice. They are more
nearly spherical than is a cube. This feature suggests, with an eye to the
incorporation of a spherically symmetrical potential, the study of a spheri-
cal cell (as used by Wigner and Seitz in their original paper (11)). Baker (13)

has found that this approximation results in an error for the ideal gas of at
most a few percent and the error tends to zero for both very large and very
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small values of z. A further motivation for the use of the spherical cellular
model is the spherical-cell character of the Thomas–Fermi and the Thomas–
Fermi–Dirac models.

3. PRESSURE FOR A SPECIAL CASE OF THE SPHERICAL CELLULAR

MODEL

In the previous section we saw how the pressure for the ideal Fermi
gas could be re-expressed in terms of the eigenvalues of the Schrödinger
equation with periodic boundary conditions in a small (Wigner–Seitz) cell.
The effect on the ideal gas pressure of using a spherical cell was discussed
and found to be small. We will use the spherical cell approximation in this
section. In this section we allow V(rF) in Eq. (2.12) to be different from
zero. We will consider the case where it is purely attractive. In the study of
elements with nuclear charge larger than unity, it is common to consider
one-electron states in a screened potential. That is to say, close to the
nucleus, the full charge is felt, and as the distance increases, a smaller and
smaller central charge is felt.

According to the results of the previous section, the ideal gas pressure
can be expressed in terms of the results computed in a small cell.
Generalizing this formalism to the non-ideal case we obtain,

1=2 C
l

1 a
2p
23

FFF
p/a

−p/a

dkF

exp[(El(kF) − m)/kT]+1
, (3.1)

and

pW=−2 C
l

1 a
2p
23

FFF
p/a

−p/a

W
“El(kF)

“W
:
T

dkF

exp[(El(kF) − m)/kT]+1
. (3.2)

We observe from these equations that when the temperature is small and
the lowest eigenvalue is non-degenerate, the principal contributions come
from the that eigenvalue alone. Following the ideas expressed at the end
of the previous section, we will choose a spherical cell. The radius
rb=[3W/(4pN)]

1
3 insures that there is, on the average, one electron per

cell. The first Brillouin zone is |kF| [ kB, where kB=(9p/2)1/3/rb. We begin
with (2.12) and impose the boundary conditions (2.13) where now ‘‘even’’
and ‘‘odd’’ mean the angular momentum l is even or odd respectively. If
we choose the potential V(r)=−(e2/r)[1+wv(r/rb)], then if v(x)=0, we
have the ordinary Coulomb potential for Hydrogen. In this case the lowest
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eigenvalue is non-degenerate, and manifestly so if rb is not small compared
to the Bohr radius, a0.

For the dilute, Coulomb case, we know, except for an error which is
exponentially small in the radius of the sphere, that the potential energy
in the ground state is minus twice the kinetic energy, (14) and so, as
W“El/“W=2

3 OTP+1
3 OVP where T is the kinetic energy, the pressure

contribution from the ground state is just that from the integration over kF
in the first Brillouin zone, We point out that the contribution of the − ikF · NF

term averages out in the ground state as l=0 there and so there is spherical
symmetry. This feature just leaves the k2 term as the only kF dependent
term. The result for the pressure in this case is thus exactly the same as for
the ideal gas at high dilutions and low temperature.

We start out with the simple Coulomb system as our reference system
and consider the v(r/rb) term in the potential, as introduced above, as a
modification there unto. As explained above, it will suffice for our present
purposes to confine our perturbation theory computations to the case
kF=0F. If we treat w as a perturbation parameter, then we may write

“(plW)
“w

=−
1
3

rb
“

2El

“w “rb
=

2
3

“El

“w
−

1
3

“Vl

“w
(3.3)

as the contribution to the numerator of the spherical cell version of (3.2)
from the state l. We do not need to consider the first order effects on the
denominator, as the spherical cellular model version of (3.1) insures that
the changes in El(0F), will be compensated by changes is m. The reason for
this feature is that we will in fact only be considering the case where l

denotes the lowest energy state, and we will take the temperature to be low
enough so the contributions from the other states will be negligible. The
right hand side of (3.3) can be computed straight-forwardly by perturba-
tion theory. First,

“El

“w
=−7fl

: e2v(r/rb)
r

:fl
8 . (3.4)

Second, the computation of “OVP/“w involves “f/“w. As it turns out that
the boundary conditions for “f/“w are the same as those for f, we may
expand “f/“w in terms of the eigenfunctions fn. The result is,

“fl(rF)
“w

= C
n ] l

7fn
: e2v

r
:fl

8

En − El

fn(rF). (3.5)
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Combining these ingredients, we obtain from (3.3) the result,

“(plW)
“w

=−
1
3
7fl

: e2v(r/rb)
r

:fl
8−

2
3

C
n ] l

7fl
: e2

r
:fn

87fn
: e2v(r/rb)

r
:fl

8

En − El

.

(3.6)

The ideas of the independent electron model, and the ideas of the Thomas–
Fermi model suggest that a potential where v(r/rb) is negative and decrea-
ses from zero at r=0 is of interest. One such potential, which is simple to
deal with, is v(x)=−x. When we substitute this case in (3.6) we get just,

“(plW)
“w

:
w=0

=
e2

3rb
> 0. (3.7)

This result shows under the right circumstances, since the pressure in the
reference system is, except for an exponentially small error, equal to the
ideal gas pressure, that the ideal electron gas pressure can be exceeded,
even when using a purely attractive potential. Physically this effect seems to
be related to the considerable increase in the kinetic energy when the elec-
tron is caught in the right sort of deep potential well.

From the thermodynamic point of view, any density dependent
potential, such as the ones with which we are concerned, lowers the chemi-
cal potential in a non-trivial way and thus may effect the pressure and the
internal energy. In the simple case we consider here, this behavior is easily
seen as it results from a simple additive, but density dependent, term to the
energy.

I have computed an example numerically for a density of about
5.8 × 10−4 grams per cubic centimeter, and w=1. Neither the formation of
molecules nor the possibility of phase transitions are considered in these
numerical computation. I used a modification of the computer program
used by Baker. (13) Germane to our application, one starts with a spherical
Heitler–London atom. Adjustments are made for exchange corrections,
and there are semi-classical corrections for the electron-electron and ion-
ion repulsions. The procedures described at the beginning of this section
are then followed to derive numerically the pressure. Results for the above
mentioned choice of v(x) are given in Table I. I have also computered the
corresponding pressures for the cellular model of Hydrogen. At the lowest
temperature reported, the pressures are very nearly at their zero tempera-
ture values. It is to be observed that for the case of Hydrogen, the pressure
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Table I. Cellular Model Pressure Results

T (ev) p (bars) p/pideal p H (bars) p H/pideal

0.5 411.9 1.438 35.48 0.1238
0.2 362.3 2.924 54.60 0.4406
0.01 340.6 8.374 36.74 0.9034

stays below that for the ideal Fermi gas. (It is not thermodynamically
forbidden for the pressure to increase as the temperature decreases. An
example is water in the approximate range of 0 to 4°C, where “v/“T|p
< 0, which implies by mechanical stability and elementary thermodynamics
that “p/“T|v < 0.) Also, we see that the pressure with the modified poten-
tial rises well above the ideal gas value. This last observation is the raison
d’être of this paper.
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